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The running coupling

The coupling in QCD effectively runs as a changes.

QCD is asymptotically free, so as a→ 0, αs(1/a)→ 0.

from R. Sommer, hep-ph/0607088

Run simulations with
“bare” value of the
coupling, β (and quark
masses).

Use one physical quantity
to determine lattice
spacing post hoc

Use ratios of hadron
masses to determine
quark masses
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Tuning quark masses
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To get to simulations of QCD
with physical l , s quark masses
requires tuning two more
parameters ml ,ms in the action.

Work here at the lab (with
Robert Edwards and Huey-Wen
Lin)

The physical point is currently
inaccessible - too expensive to
run simulations there.
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QCD on the computer - Monte Carlo integration

On a finite lattice, with non-zero lattice spacing, the number of
degrees of freedom is finite. The path integral becomes an “ordinary”
high-dimensional integral.

High-dimensional integrals can be estimated stochastically by Monte
Carlo. Variance reduction is crucial, and can be achieved effectively
provided the theory is simulated in the Euclidean space-time metric.

No useful importance sampling weight can be written for the theory
in Minkowski space.

The Euclidean path-integral is a weighted average:

〈O〉 =
1

Z

∫
DUDψ̄Dψ O[U, ψ̄, ψ] e−S[U,ψ̄,ψ]

e−S varies enormously; sample only the tiny region of configuration
space that contributes significantly.
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Importance sampling

Importance sampling is a variance reduction method.

Variance reduction: we can construct stochastic estimates of the
integral of interest that have lower variances. This means the
standard error for a given sample size is lower.

This is extremely effective for many high-dimensional integrals that
arise in theoretical physics (statistical physics, thermodynamics, field
theory, . . . ).

The fraction of phase space that contribute significantly is miniscule -
we want methods to generate points only in these important regions
= importance sampling.
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Importance sampling

Consider the D dimensional integral,

I =

∫
V

f (x) dDx =

∫
V

f (x)

g(x)
g(x)dx

Generate points {x1, x2, x3, . . . } in V with probability density g(x).

Then for i = 1 . . . n, compute hi = f (xi )
g(xi )

over the sample points. The
theory of Monte Carlo gives

E (h) =

∫
V

h(x)g(x)dx = I

The expected value of h is the integral, I so averaging hi gives an
unbiased estimate of I .
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Importance sampling

So how has changing the sampling probability helped?

The uncertainty in our estimator is related to its variance.

var(h) = E (h2)− E (h)2

and

E (h2) =

∫
f 2(x)

g2(x)
g(x)dx =

∫
f 2(x)

g(x)
dx

The expected value of h is I , and so independent of g but the
variance of the estimator does depend on h.

The optimal choice for h is

hopt(x) =
|f (x)|∫

V |f (x)|dx

It is usually impractical to find hopt, but this result hints how to
improve the sampling - sample regions where f is large more often.
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Benefits of importance sampling

Examples of the benefits of importance sampling

I0(z) =

∫ z

0
e−xsin2πx2 dx

Flat Sampling - 10,000,000 samples
z MC estimator ± error

1.0 0.197192± 0.000058
10.0 0.37907± 0.00029

100.0 0.37818± 0.00097
1000.0 0.3768± 0.0031

Importance sampling p(x) ∝ e−x 10,000,000 samples

z MC estimator ± error

1.0 0.197115± 0.000070
10.0 0.37902± 0.00011

100.0 0.37895± 0.00011
1000.0 0.37908± 0.00011
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Dynamical quarks in QCD

Monte Carlo integration with Nf = 2 (mass degenerate) quarks.
Quark fields in the path integral obey a grassmann algebra which is
difficult to manipulate in the computer.
The quark action is a bilinear; the grassmann integrals can be done
analytically and give

ZQ [U] =

∫
DψDψ̄ e−

P
f ψ̄f M[U]ψ = det MNf [U]

The full partition function, including the gauge fields is

Z =

∫
DU ZQ [U]e−SG [U] =

∫
DU det MNf [U]e−SG [U]

For (eg) Nf = 2 det M2 is positive and can be included in the
importance sampling. It is a non-local function of the gauge fields,
and expensive to compute. Using M† = γ5Mγ5, det M2 is re-written

ZQ [U] =

∫
DφDφ∗e−φ∗[M†M]−1φ

Mike Peardon (TCD) QCD on the lattice HUGS 2008 9 / 14



Dynamical quarks in QCD

φ is an unphysical (non-local action) bosonic field with colour charge
and spin structure (!) called the pseudofermion.
Measuring the action requires applying the inverse of M a very large
matrix
M is sparse, and there are a set of linear algebra tricks (Krylov space
solvers etc) that work effectively.
Unfortunately, they require many applications of the matrix to a
quark field, and so take a lot of computer time.
This is where most computing power in lattice simulations goes;
computing the effect of the quark fields acting on the gluons in the
Monte Carlo updates.
The alternative is the quenched approximation to QCD; ignore the
fermion path integral completely - this is an unphysical approximation
so its effects are hard to quantify.
Inversion is needed again in the measurement stage too;

〈ψ(x)ψ̄(y)〉 = M−1[U](x , y)
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Markov Chain Monte Carlo

How is the configuration space sampled?

All techniques use a Markov process: this is a stochastic transition
that takes the current state of the system and jumps randomly to a
new state, such that the probability of the jump is independent of the
past states of the system.

Ergodic (positive recurrent, irreducible) Markov chains have unique
stationary distributions; build the Markov process so it has our
importance sampling distribution as its stationary state.

If this can be done, then the sequence of configurations generated by
the process is our importance sampling ensemble!

Almost all algorithms exploit detailed balance to achieve this.
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Some physics: the confining string (2)

Now for some physics!

One of the first physical quantities calculated on the lattice is the
(confining) potential energy of two static colour sources, separated by
distance R

Energies are measured by examining the fall-off of a two-point
correlation function measured in the path integral by Monte Carlo.

What would appropriate gauge invariant operators look like for the
static potential?

a†(R, t) =
∑
x

Q̄(x , t)Ui (x , t)Ui (x + ı̂) . . .Ui (x +(R−1)̂ı)Q(x +R ı̂, t)

If the mass of the field Q is taken very large, the propagator becomes
proportional to just a time-like string of gauge fields

So the potential can be measured by computing the expectation value
of large, flat space-time loops of gauge fields.
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The confining string (2)

from C. Morningstar and M.P, Phys.Rev.D56:4043-4061,1997 hep-lat/9704011
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Summary

Lattice bare couplings determine the lattice spacing and meson
spectrum, so making contact with physics implies β is a function of a
(they are not independent).

The best way of tuning bare quark masses is still a research topic. In
principle there are lots of perfectly fine definitions.

Making non-perturbative predictions from the lattice QCD path
integral requires numerical attack - Monte Carlo simulations

The quarks present a particular challenge - the grassmann integrals
are difficult to manipulate directly

They can however be integrated out analytically, leaving a non-local
action on the gauge fields.

Manipulating the dynamics of this action requires evaluation of the
inverse of a large, sparse matrix - this is the computationally
expensive part of lattice calculations.
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